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We construct an H-function suitable for a system of dense hard spheres 
satisfying the (modified) nonlinear Enskog equation and we show that 
0tH ~< 0. The equality sign holds only when the system has reached absolute 
equilibrium, in which case S =--kBl-1 becomes the exact equilibrium 
entropy of the hard-sphere fluid. 

KEY W O R D S  : Enskog equat ion ; entropy ; hard-sphere f luid ; H- theorem ; 
kinetic theory. 

1.  I N T R O D U C T I O N  

Despite its phenomenologica l  character ,  the Enskog equat ion <~-a~ is very 
successful in describing t ranspor t  phenomena  in dense fluids. (~ 

This equation, governing the t ime evolution of  the one-particle distribu- 
t ion function (d f ) f~( r l ,  v~; t), is writ ten 

Or f l  + v l .~ f l /~ r l  = J q f l ,  ]'1) (1) 

where the collision opera to r  d E is defined by 

• [g~(r~, rl - a+~ln(t))fl(rl, v / ;  t )A ( r l  - a e ,  v2'; t)  

- g~(rl, r l  + a+cln(t))f~(rl, vl;  t )A(r l  + at ,  v2; t)] (2) 

Here,  a denotes the hard-sphere diameter  (a+ means a + 17/[ with 171 - +  0), 
a is a unit vector,  and @(x) is the Heaviside function; moreover ,  v~' and v2' 
are the velocities after the collision: 

vl' = v~ - <~.v12), v~' = v2 + ~(c.vl~) (3) 
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@12 = vl - v2); finally, g2, a functional 2 of the local density n(r; t) = 
f dv f1(r, v; t), is defined below. 

Two features of this equation make it very different from the Boltzmann 
equation :<2,3~ (a) The centers of particles 1 and 2 are separated by a distance 
a at collision; this leads to the mechanism of collisional transfer. For example, 
at collision, the momentum Ap = m(v~' -- vl) exchanged between the mole- 
cules is instantaneously transferred from the center of one molecule to the 
center of the other. (b) Although the dynamics of the collisions corresponds 
to two-body events, the frequency of these collisions differs from the dilute 
gas value by the factor g2. 

In his original intuitive argument, Enskog took for g2 a quantity which, 
in modern language, can be identified with the equilibrium pair correlation 
function, calculated for the local density at point (h + r2)/2. More recent 
investigations <~-7~ have shown, however, that this prescription has to be 
slightly modified (leading then to the so-called "modified" Enskog equation) 
in order to have a consistent theory; such work leads to a microscopic 
expression for g2 from the single approximation that, at any time, the only 
correlations in the system are due to the excluded volume between the 
spheres; in particular, no correlations between velocities are retained. The 
mathematical aspects of this approach are discussed in detail in Section 2. 

While Boltzmann's H-theorem lies at the very basis of the kinetic theory 
of dilute gases--in particular, in justifying the local equilibrium assumption 
underlying the Chapman-Enskog method<2~--no such theorem has been 
proved as yet for the Enskog theory. For example, such a careful text as 
that of Chapman and Cowling (2~ merely notices that, for a spatially uniform 
system, the Enskog equation drives the velocity distribution function toward 
the Maxwellian (because, in this case, jE only differs from the Boltzmann 
collision operator by the constant factor &); these authors then immediately 
limit themselves to distribution functions differing only slightly from local 
equilibrium. Whether the Enskog equation drives an arbitrary initial df 
toward absolute equilibrium remained an open equestion: the aim of this 
paper is to settle this point in the affirmative, at least for the modified Enskog 
theory. 

The remainder of this paper is organized as follows: as already men- 
tioned, Section 2 is devoted to the precise formulation of the modified 
Enskog theory. In Section 3, we define a functional of the one-particle df, 
S = S( f l ( t ) ) ,  which at equilibrium reduces to the exact entropy of the hard- 
sphere fluid ; we then prove the following H-theorem (assuming, for simplicity, 
periodic boundary conditions): 

dS/dt > 0 (4) 

2 The quantity f(rl), depending functionally on g(r; t) for all r, is often written f(rllg(t)). 



H-Theorem for the (Modified) Nonlinear Enskog Equation 595 

Under rather mild mathematical conditions, we also show that S tends 
toward a stationary value, and that f~ is then the absolute equilibrium df 
over the whole system. 

A few questions raised by our approach are briefly discussed in Section 4. 

2. THE M O D I F I E D  ENSKOG EQUATION ( M E E )  

In this section, we present a derivation of the MEE, with the help of one 
single approximation made, for all times, on the N-particle time-dependent 
distribution function. 

A convenient starting point is the first BBGKY hierarchy equation :(3) 

+ vl" afl/arl = f dr2 dr2 K12f~(r~, r2, vl, v2; t) (5) 

where, in the case of hard spheres, the operator K~2 is defined by 

Kn  = a 2 f d% (e.v12)O(e.vn)[a(r12 - a+e)b, - 3(r12 + a+e)] (6) 

Here b, is the following displacement operator in the velocity space of 
particles 1 and 2: 

b,f(vl,  v2) - f ( v / ,  v2') (7) 

Of course, the whole problem is to close Eq. (5) by finding a functional 
relationship expressing f2 in terms off1.  Though this can be done formally 
by a variety of methods (see the examples of Ref. 3), one has in general to 
use some approximation in order to get explicit compact expressions. 

The approximation made in deriving the MEE is based on two wishes: 
(a) to take into account explicitly the excluded volume effect due to the 
finite diameter of the hard spheres; (b) to keep as much as possible of the 
original Boltzmann stosszahlansatz, which, in the dilute gas limit, says that 
f2 = fff~,  before collision at least. 

A convenient way to cast these properties into a mathematical frame- 
work is to assume that, at all times, the reduced df  of  the system can be 
calculated from the following grand canonical dr: 

with 

lfif  Pu = ~ ,>j =~ | ~=1 W~(t)/E(t), N = 0, l, 2 .... (8) 

E(t) = N~o~-[ j drN I-I O,,I~ W~(t) (9) 
�9 ~>/=i i=l 
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In these equations, we have introduced the notations 

O~y = |  - -  a ) ,  r~j  = [r~ - -  r;I 
W,(t) = W(r,, v,; t) (10) 

dF N-" = dr,+l..-drN dv.+l-.-dvN 

The reduced n-particle df 

N !  fdr -. (11) f ,(r l , . . . ,  r , ,  vl,..., v,; t) = (N ---n)~ PN 
N = r ~  

are thus all expressible in terms of W(r, v; t). Yet, to be meaningful, we still 
need to define this latter function precisely; this is done by considering Eq. (11) 
for n = 1 as providing the definition of W: 

A(rl, vl; t) - f~(n] w(t)) (12) 

We assume that this expression can be inverted to express W as a functional 
off1 [see also the remarks after Eq. (14)]. 

Before showing how this formalism leads to the MEE, we make a few 
remarks: 

(a) The form proposed in Eq. (8) is not new. In the canonical ensemble, 
a similar assumption was explicitly used by Lebowitz et aL ~5,6> to derive the 
linearized form of the MEE; these authors also showed that this approxima- 
tion leads to the exact short-time behavior for the velocity autocorrelation 
function. Again in the canonical formalism, Van Beijeren and Ernst ~7) 
proposed an approximation similar to Eq. (8) to derive the nonlinear MEE; 
extending their calculation to mixtures, they showed that this MEE was 
superior to the original Enskog equation, because it leads to transport 
coefficients consistent with the Onsager relations. 

(b) Two reasons caused us to prefer to working in the grand canonical 
formalism. First, it is clear that in the canonical formalism, where we should 
take instead of Eq. (8) 

1-I~>j=l @,j 1-I~=1 W~(t) (N fixed) (13) 
p~an = f dP  n N I-I,>s=i @,j ]-[~= 1 W,(t) 

the function W enters with the same power in the numerator and in the 
denominator; in this case, Eq. (12) can at best determine Wup to a constant. 
This constant has then to be fixed by an extra condition, which is not 
obvious to guess? 

3 Yet, to establish the global H-theorem discussed here, this extra condition only plays 
a minor role, and the canonical formalism can be used, as we have done in a preliminary 
work.(a) 
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Second, the statistical mechanics of the nonuniform system described by 
Eq. (8) is fairly well understood; indeed, disregarding the dependence on time, 
Eq. (8) shares a great many similarities with the equilibrium grand canonical 
distribution of hard spheres in an external field V(r). We need merely keep 
in mind the correspondence rule 4 

W(r, v; t) ~- z{exp[- V(r)/k~T]}q~eq(v) (14) 

(where z is the fugacity and ~eq is the Maxwellian) for us to be able to borrow 
many interesting results from the literature (in particular, see the remarkable 
review of Ref. 9). The analogy is even more striking if we limit ourselves to 
the spatial part: 

zl(r; t) - f dv W(r, v; t) ~ z exp[ - V(r)/k~T] (15) 

Let us illustrate this point by an example. We define the quantity 

[ f b~(rl r~[zl(t))= ~ 1 d W - ' I - ~ I  O,,I'--IW~ E(t) (16) 
" '"  ~ =. (N n) ! i>]=l i=i 

where, in the notation, we have explicitly taken into account that b, depends 
on W only through its velocity integral. We can then rewrite Eq. (12) as 

f~(r~, vl; t) = W(rl, v~ ; t)bl(rl[zl(t)) (17) 

and, by integrating over vl, we find that zl is determined by the local density 
through the implicit relation 

n ( r l ; t )  = z~(rl; t)bl(rllzl(t)) (18) 

Formally, this equation is precisely the same as the expansion of the local 
equilibrium density in terms of zl --> z exp[ -  V(r)/kBT] : in the frame of the 
Mayer cluster expansion at least, we know that this relation can be inverted (a) 
and this guarantees the existence of z~ [and therefore of W(r, v; t)] for any 
arbitrary density n(r; t) [and therefore for anyfl(r ,  v; t)]. Moreover, we are 
also taught that 

n(r; t) _ 
In z~(r; t) - "real number" (19) 

[see, for example, Eq. (5.6) of Ref. 9], where the "real number" is defined in 
terms of a series of graphs (the precise definition of which is irrelevant for our 
present purpose): hence zl(r; t) is a positive function for any given (positive) 
density profile n(r; t). An immediate consequence of this and of Eqs. (16) 
and (17) is that W(r, v; t) /> 0 provided f~(r, v; t) /> 0: this property is 
crucial, as it ensures that the approximate pN of Eq. (8) can indeed be inter- 
preted as a probability density. 

4 "Fugacity" functions like W were first introduced into nonequilibrium statistical 
mechanics by E. Cohen and co-workers (see Ref. 3b and references quoted there). 
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(c) Of course, except at equilibrium [where W = z~0eq(v)], Eq. (8) is an 
approximation and can, at best, be exact at one single instant. Yet, it is 
precisely the crucial assumption of the Enskog theory that the velocity 
correlations--which are unavoidably present--always remain small and can 
be neglected. It is not the purpose of this paper to discuss this approximation. 

The derivation of the MEE from our basic assumption (8) is very direct. 
Taking Eq. (11) for n = 2, we get 

f2(rl, r2, vl, v2; t) = W(rl, vl; t)W(r2, v2; t)b2(rl, r2[zl(t)) (20) 

and combining this expression with Eq. (17), we arrive at the desired closure 
relation: 

f2(rl, r2, vl, v2; t) = g2(rl, r2ln(t))f~(rl, vl; t)f~(r2, v2; t) (21) 

where g2 is defined by 5 

b2[rl, r2lzl(" In(t))] (22) 
g2(rl, rzln(t)) = b~[rllzl(. [n(t))]bl[r2lz~(" in(t)) ] 

This is formally written as a functional of the density because of the implicit 
equation (18), i.e., 

za(r; t) = z~(rln(t)) (23) 

Using the remarks made after Eq. (14), it is easily verified that, at 
equilibrium, g2 reduces to the familiar pair correlation function; more 
generally, one can show that Eq. (22) coincides with the definition of the 
function 2 used by Van Beijeren and Ernst. ~7) Let us recall that these authors 
have shown that their 2 [hence g2, as defined in (22)] differs from the original 
Enskog choice to second order in the gradients of the density for a simple gas 
(and to first order in a mixture): the results derived in the next section, and 
obtained by using (22), will thus apply to the MEE only, and not to the 
original Enskog equation. 

As a matter of fact, this MEE [i.e., Eqs. (1), (2), (22)] is immediately 
obtained within our formalism by inserting (21) into (5). 

Before closing this section, we mention three properties which we shall 
use later. 

First, let us calculate the variation of In E(t) in an infinitesimal variation 
of W(r, v; t). It immediately follows from the definitions (8), (9), and (15) 
that 

3 In E(t) = f dr~ dv~ b~(r~lzt(t)) ~W(rl, t) Yl; 

drl bl(rzlzl(t)) 8zz(rl; t) (24) 

5 The discussion after (19) shows that the b., and therefore g2, are positive-definite 
quantities. 
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Second, let us differentiate bl with respect to rl. Using the property 

,3 012 r12 ~(r12 - a) 
 r-S = a 

we get from the definition (16) 

f l'z2 3" -- c~bl(rllzl) = dr2--~- ~r12 a+)b2(rl, r21z~)zz(r2; t) (25a) Or~ 
Dividing both sides by bl(rllzx) and using the definition (22) for g2, we rewrite 
this as 

In bl(r~lz~) = _f dr2 r~2 c~rl _ "-a- ~(r12 - a+)g2(rl, r2[n(t))n(r2; t) (25b) 

which is the first equation of a hierarchy which imitates, for our particular 
nonequilibrium ensemble, the well-known equilibrium hierarchy for hard 
spheres (see, for example, Ref. 5). 

Finally, we notice that if z~ is independent of the spatial coordinate r, 
bl is then spatially uniform by translation invariance; from (18), we learn that 
the density n is also constant throughout the system. 

3. THE H-THEOREM 

We have a few guides to help us in finding an entropy function S (or 
the corresponding H-function: H = - S / k B )  appropriate for studying the 
MEE: 

(a) In the dilute gas limit, the MEE becomes the Boltzmann equation, 
and S should then reduce to the well-known - k B f d r d v f l ( l n f l -  1), 
possibly apart from a constant. 

(b) In a spatially homogeneous system, the Enskog collision operator 
differs from the Boltzmann operator by the constant factor g2(r12 = atn) 
only; therefore S should again reduce to Boltzmann's entropy in this case. 

(c) More important is the fact that the local equilibrium properties 
calculated from the MEE are exactly those of the hard-sphere gas. (This 
point is stressed in particular in Refs. 3a and 4b.) For example, the local 
equilibrium energy density--of purely kinetic origin--is given by 

e(r; t) = 3n(r; t)kBT(r; t)/2 (26) 

Similarly, one can show that the pressure that appears in the Navier-Stokes 
equation as derived from the MEE is again the exact formula: 

p(r; t) = n(r; t)kBT(r; t)[1 + ~-rraan(r; t)g2(a[n(t))] (27) 

As these two thermodynamic properties calculated with the MEE take the 
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correct value for the dense hard-sphere gas, it is tempting to conjecture that 
the same should hold true for all such properties, in particular, for the entropy. 

(d) As the MEE describes the time evolution off1  only, our definition 
of entropy, if it is to be of any use at all, should be a functional off1 and of 
no other time-dependent quantity. 

A suggestion which satisfies the above requirements is the often mis- 
treated formula 6 

H(t) = ~ f aI TM pN(t) In[N! pN(t)l (28) 
N = 0  J 

where ON is the approximate N-particle df  (8), and of  course not the exact 
solution of the Liouville equation, for which (28) would remain constant. 

Let us rewrite (28) more explicitly: 

I-I 
~ > 1 = i  I = i  

x In | W~(t) - In E(t) (29) 
i I ~ = I  

Interpreting @~j In O~j as zero for r~j < a, we get, with the help of (11), (15), 
and (17), 

H(t) = Hk(t) -t- HV(t) (30) 

where the kinetic part H k is 

Hk(t) = f dr1 dr1 f~(rl vl; t)[lnf~(r~, vl; t) - 1] (31) 

and the potential part H v is 

H'(t) = - l n  E(t) + f dr~ n(rl; t){1 - In bl[r~[zl(. In(t))]} (32) 

With H written as (30)-(32), it is an easy task to verify that all the 
conditions (a)-(d) are satisfied. As a hint, let us simply point out that E(t) 
depends on time through z~(r[n(t)), which, in a homogeneous system, is 
independent of r and t, while in the dilute gas limit, it reduces to n(r; t). 

To derive our H-theorem, let us first consider the time derivative of H k. 
We have 

~tH~(t) = f dr~ dv~ (In f~)J~(fl, fl) (33) 

6 The factor N !, which appears for the classical grand ensemble, is discussed, for example, 
in Ref. 10. 
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where the term coming from free flow, 

8f~ (34) f dr1 dr1 (lnf~)vl"j-~r~ f~ = - f  dr1 dr1 vt"&l 

has been set equal to zero. Indeed, we consider here a system satisfying 
periodic conditions at the boundaries: this will keep us from having to enter 
into the delicate analysis of the physically realistic conditions that f l  has to 
satisfy at the walls; even in the dilute gas limit (see the excellent discussion of 
Refs. 3b and 11), these conditions are not simple, but we may hope they 
have little bearing on the irreversible processes which occur in the bulk of 
the system. 7 

With the help of (2), we rewrite (33) as 

8,H~(t) = a 2 f dr1 dr2 dvl dv2 f d% [ lnf l ( r l ,  u t)] 

x (e-v12)@(c.v12)g2(rl, r2]n(t))[3(r12 - a+e)fl(rl ,  vl'; t) 

• A(r2, v2'; t) - 8(r12 + a+e)f1(rl, vl; t)/l(r2, v2; t)] (35) 

which we then submit to two standard manipulations: 
(a) In the term involving 8(r12 - a+c), we use vl', v2', and e' = - e  as 

new integration variables. The Jacobian of this transformation is unity and 
we obtain readily 

Od-l~(t) = - a  ~ dr~ dr2 dr1 dv~ . ~ lm . . . .  (c.vl~)O(e-vl~) 
L ] l ( r l , v l  , 

• g2(rl, r2[n(t)) 8(r12 + a+~)fl(rl, v~; t)f~(r2, v2; t) (36) 

(b) In (36), we exchange the variables r l ,  vl ~ r2, v2 and, at the same 
time, we use e' = - e  as a new integration variable. Taking half the sum of  
this new expression with (36), we arrive at 

( ( [. f~(r~, v~" t)fl(r2, v2; t ) ]  
8~Hk(t) = --�89 2 dr1 dr2dvl dr2 dZ~ ~ m - -  --7' 

3 ) { f l ( r l ,  vl ; t)A(r2, v ~  7)/ 

• (e.v12)O(e'v12)g2(rl, r21n(t)) 3(r12 + a+e) 

• f l ( r l ,  vl; t)fl(r2, v2; t) (37) 

The crucial inequality which allows us to proceed is 

x(ln x - In y) /> x - y (x, y > 0) (38) 

with the equality sign holding only when x = y;  the use of (38) in non- 
equilibrium statistical mechanics goes back to Gibbs. (12) 

7 Our point of view can be confirmed by verifying that, in the dilute gas limit, our 
artificial periodic conditions lead to results similar to more realistic treatments of the 
walls. 
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We obtain (keeping in mind that g2 and t.v12 are positive) 

~H~(t) <<. �89 2 f dr1 dr2 dr1 dr2 f d% (e.v12)| 

• [fl(rl, vl'; t)fl(r2, v2'; t) - f l ( r l ,  vl ; t)fl(r2, v2; t)] 

• g2(r~, r2ln(t)) 8(r12 + a+c) (39) 

Using again the change of variables vl', v2' ~- vl, v2 and performing the 
integral over e with the help of the Dirac delta function, we arrive at the 
following formula: 

8tHk(t) <. I(t) (40) 

with 

I(t) = .f dr1 dr2 r12 T 8(r12 - a+)g2(rl, r2In(t)) 

x [ f  dVlVlfl(rl, vl; t)]n(r2; t) (41) 

where the symmetry between particles 1 and 2 has also been exploited. 
The potential term H ~ is easier to treat; from Eqs. (24) and (32), we get 

immediately 

- f  dr1 ~bl(rllzl(,))~,zl(rl; ,) - 0tn(rl; ,) + 0tn(rl; ,) OtHk(t) 
\ 

n(ri; t) etbl(rilzl(t)) ~ • [ln ba(r~[zfft))] + b~(rl; t----~ (42) 
J 

From (18), we immediately check that all the terms in the integrand 
cancel except the one involving In b~. As, moreover, the density n(r~; t) 
satisfies the continuity equation 

o; 
Otn(rx ; t )  = ~-rr.l" dv~ v~A(r~, vl; t) (43) 

we obtain, after an integration by parts, 

f 1 ~ b~(r~lzl(t))[fdv~v~fl(rl, v~;t)] (44) OtHv(t) = - dr~ b~(rllz~(t)) 3r~ 

From Eqs. (25b) and (41), we find, then, 

OtH"(t) = -I ( t )  (45) 

and, combining (30), (40), and (45), we arrive at the announced H-theorem 8 

~tH(t) <~ 0 (46) 

8 The fact that exactly the same function I(t) appears in our inequality for ~H~(t) and 
in OtH~(t) is not true when the original Enskog equation is used instead of the MEE. 
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It remains to prove that the function H reaches a stationary value and 
that, when 8tH = 0, the one-particle df is the absolute Maxwellian. Concern- 
ing the first of these two statements, we merely have to repeat the assumptions 
made in discussing the Boltzmann equation53) the finiteness of the total 
number of particles 

f drl dr1 t) < oo (47) A(rl, vl 

and of the total energy 9 

f drl dr1 �89 t) < oo v l ;  (48) 

ensures that Hk(t) is bounded from below. Moreover, it is easy to verify that 
the potential part H ~, which depends on the local density only, is also 
bounded. Therefore, H has to reach a stationary value; from (37) and (38), 
this happens only if 

lnf l ( r l ,  vl) + lnfl(r l  + ac, v2) = lnf l ( r l ,  vl') + lnfl(r l  + ae, v2') (49) 

for all r~, r2, V~, v2, and r such that 

(~.vl~) > 0 (50) 

Yet, this latter condition can be forgotten. To show this, we take Eq. (49), 
at given ~, for values of v~ and v2 respectively equal to v~' = vl - e(e.vlz) 
and v2' = v2 + e(e.v~2). With (v~')' = v, (i = 1, 2), we see that Eq. (49) 
remains unchanged while (50) becomes 

(*.v~2) =- (e .v12)  > 0 (51) 

which establishes our point. 
To proceed, it is convenient to define the Fourier transform of In f~: 

~k(Vx) = f drx [exp(ik.r~)] In f~(r~, v~) (52) 

The wave number k takes the discrete values 

k = 2~rn]L, n = (nx, ny, n~), integers (53) 

where, to simplify, we suppose that our system is enclosed in a cubic vessel 
of side L. 

9 With our periodic conditions, both  the number  of particles and the energy inside the 
system are conserved in time: therefore, (47)-(48) have only to be imposed at t = 0. 
Let us, moreover, stress that  our whole calculation, including the definition of H itself, 
makes sense for a large but finite volume ~2 only (see also Section 4). 
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For  any Vl, v2, k, and ~, Eq. (49) leads to 

qbk(Vl) + qbk(V2) exp(--  iak .  r = qbk(v 1') + qbk(V2' ) exp(--  iak.  ~) (54) 

We then take the same equat ion for  the value ~ -- - e  [noticing that  v~'('g) = 
v~'(r and we bo th  subtract  and add this result to (54). We arrive at  the two 
following condit ions;  for  any vl ,  v2, k, and 

sin(ak.e)[q~k(v2) -- ~k(Vz')] = 0 (55a) 

[~bk(Vl) -- dPk(Vl')] = cos(ak'e)[qbk(v2) -- ~k(V2')] (55b) 

Suppose first that  k # 0; provided that  

ak .  t = (2rra/L)n. e ~ rrm, m any integer (56) 

Eq. (55a) is equivalent to 

�9 k(v2) -- ~k(v2'), k # 0 (57) 

Moreover ,  e is a cont inuous variable (subject to the constraint  ex 2 + %2 + e2 = 
1) and the set of  e satisfying a k . t  = rrm is, for  fixed k, o f  zero measure  com- 
pared  to the total  allowed domain  of  ~. Therefore,  if  we assume that  the 
one-particle d f f l ( r ,  v; t)  [or Ok(v; t)] is a continuous function of  v, we may  
forget  the restriction (56) and use Eq. (57) for  any v2 and c; the solution of  
this equat ion is simply 

�9 k(v~) = ~k, k ~ 0 (58) 

where ~,  is a constant  independent  o f  v~..1~ 
In  the case k = 0, Eq. (55a) is o f  no use, but  Eq. (55b) then reduces to 

the familiar condit ion characterizing the collision invariants o f  the Bol tzmann 
equat ion ;(a) we have 

qb0(v) = ~o + [~.v + 7v 2 (59) 

where %,  /3, and V are absolute constants.  Combining  (58) with (59) and 
going back to configurational space, we find 

In f l  = ~ c~k exp( - - ik . r )  + I$.v + 7v 2 (60) 
k 

o r  

n(r) e x p [ -  m(v - u)2/2kBT] (61) 
f~ = (2~kBT/m)312 

lo The formal proof of this rather obvious result follows the line used to show that 1 is 
the only collision invariant of the Boltzmann-Lorentz operator (see Ref. 3 and the 
references quoted there). 
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where n(r), u, and T are related in the usual manner (2'3~ to ak, 13, and 7 and 
have an obvious interpretation: they respectively represent the density, the 
velocity, and the temperature of the fluid. 

Let us stress that Eq. (61) is very different from the local equilibrium 
solution of the Boltzmann collision term: u and T are absolute constants 
over the whole system. This important feature can be traced back to the 
mechanism of collisional transfer: this latter allows the different points of 
the system to exchange momentum and energy through collisions. In fact, 
we even have the stronger result, which we prove presently, that the only 
density n(r) such that Eq. (61) describes a stationary solution of the MEE is 
also a constant. 

To see this, we insert Eq. (61) into (1), (2); to get a time-independent 
solution of the MEE, we need to have 

an(r~) 
Vl~oe~(IVl - -  u l )"  ar~ 

= a2 f dv~ ~ d2~ (c.v12)O(c.v12)[g2(rl, rl - a+~,n)n(rl)n(rl - a~) 

- g 2 ( r l ,  r l  + a+eln)n(h)n(rl + aE)]~oeq(lvl - u[)~o*q(]v2 - u ] )  (62) 

with 

9~eq(v) = (rn/2~rkaT ) 312 e x p ( -  mv2 /2kaT) (63) 

Using standard manipulations for hard-sphere collisions, ~2,3~ we can 
perform the integration over v2 on the right-hand side of (62). Comparing 
the result with the right-hand side of Eq. (25b), we can readily verify that 
condition (62) on the density n(rl) can also be written 

In n(rl) _ 8 In bl(r~) (64) 

Integrating this equation, we see from (18) that z~ = n(r~)/bl(r~]zl) is 
independent of r~; as we demonstrated in the final paragraph of Section 2, 
this implies that the density is constant throughout the system: 

n(r) = n (independent of r) (65) 

Finally, we have seen in Eq. (61) that our periodic conditions allow for 
an arbitrary constant fluid velocity u; however, as this velocity is conserved 
in time, we best imitate a system with realistic boundaries by choosing u = 0. 
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In this way, our H-theorem guarantees that the MEE drives the system 
toward the absolute Maxwellian: 

f l = nrPeq(vl) (66) 

(for periodic boundary conditions at least). 

4. D I S C U S S I O N  

Despite the approximate character of the MEE, the proof of an H- 
theorem for this kinetic equation is important because it is the first explicit 
demonstration of the approach to equilibrium of the one-particle df in a 
strongly interacting system. From this point of view, the MEE seems to offer 
a definite advantage over the density expansion of the (formally exact) 
generalized kinetic equation, where, except for the lowest order Boltzmann 
term, no equivalent property has been found (see Ref. 3 and references quoted 
there). Let us repeat also that our calculation says nothing about the original 
Enskog equation [from which the MEE differs to order (0/0r) 2 is a simple 
gas]; yet, the fact that this original Enskog approximation suffers from serious 
inconsistencies (like the violation of the Onsager relations for mixtures) 
makes it improbable that it obeys an H-theorem in general. 

Clearly, from a rigorous point of view, our calculation--at least in its 
present stage--tells us very little on how the irreversibility of observable 
(reduced) properties can possibly emerge from the reversible equations of 
motion for the whole system: the MEE is based on an ad hoc assumption, 
which, despite its success, cannot be made mathematically rigorous in any 
limit. Yet, it is very remarkable that there exists an H-function, depending 
on f l  only, such that e~H ~< 0, with the equality sign holding at absolute 
equilibrium only. Glancing backward at the coherence of the whole calcula- 
tion, we cannot believe that this fact is fortuitous, and therefore it should 
open the way to a deeper understanding of strongly coupled systems. 

Yet, we should not hide the enormous difficulties that are circumvented 
with the approximate MEE. Let us cite just a few of them: 

(a) What replaces the excluded volume effect when the forces are smooth ? 
(b) What should be done with the non-Markovian effects which are 

ineluctable consequences of the velocity correlations between the particles ? 
(See, for example, Ref. 3a.) 

(c) What happens when the strict thermodynamic limit (N-->oo, 
f~ --~ oo, N/~2  = n finite) is taken ? 

Concerning this last point, the attentive reader will have already noticed a 
paradoxical situation: while it is generally believed that irreversibility is a 
property of systems with infinitely many degrees of freedom, we have proved 
here a g l o b a l  H-theorem, i.e., a property applying to the whole system: this 
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system is large but necessarily f in i te  (otherwise, we find, for example, diffi- 
culties when talking about boundary conditions). Of  course, from our pheno- 
menological point of  view, we may ignore this difficulty (we have merely 
neglected terms of "order  1/N") ,  but it is not easy to be more rigorous, 
except perhaps by generalizing our approach to a local point of  view (see 
below)? 1 

Another difficulty is that, beyond the macroscopic regime where non- 
equilibrium thermodynamics holds, nothing forces us to a unique definition 
of entropy: any "Liapounov function" displaying the irreversible kinetic 
behavior is a priori valuable. For  example, Prigogine and co-workers have 
investigated Liapounov functions at the level of  the N-body  formal master 
equations: ~15~ due to this difference in point of  view, it is very difficult to 
compare their approach with the present calculation. We also cite an attempt 
by Hubert  (16~ to prove an H-theorem for the (original) Enskog equation, but, 
except in the thermodynamic regime where no surprise was expected, 12 he 
was not able to get any conclusive result. 13 Nevertheless, the present attempt 
is extremely pleasing because it generalizes, in the most natural way, Boltz- 
mann 's  original ideas. 

To give a hint of  other possible extensions of  our work, let us recall 
that the second postulate of  thermodynamics can be written (see, for example, 
Ref. 20) 

a s . / a t  = g ,S . /d t  + 4s.Idt (67) 

d, Sn /d t  >1 0 (68) 

The total entropy variation d S , / d t  of  an open system of volume f2 is the sum 
of an entropy exchange with the external world d e S J d t  and of an entropy 
production d~Sn/dt which is semipositive definite. 

In order to provide a microscopic content to these equations for a system 
described by the MEE, we have used periodic boundary conditions: thus, 
there is no accessible "external world." Any entropy flow at the walls is 
automatically reinjected into the system and therefore deS , /d t  = 0. In some 
sense, we have a model of  " p u r e "  irreversible behavior. It  is hard to believe 
that more realistic boundary conditions could destroy our / / - theorem; 

11 Such a difficulty can be avoided with the Boltzmann equation if, instead of the usual 
thermodynamic limit N--+ o% ~ -+ ~ ,  N/f~ = n finite, we adopt the so-called Grad 
limit a --+ O, n --~ 0% (a~n) finite and ~ finite. (~1"1a'1~) As the covolume effects are of 
order (aan), this limit is of no use here. 

12 The macroscopic physics of a strongly interacting system is that of a dilute gas, except 
for the value of the transport coefficients. 

la In passing, we also cite a master-equation attempt by Hubert (18) to describe the hard- 
sphere gas: this work will be discussed elsewhere. (~9) 
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nevertheless, we have here an obvious question to answer in a precise 
fashion, probably along the lines used for the Boltzmann equation. (3b,11) 

A second point is that Eqs. (67)-(68) can also be postulated for any part 
of a macroscopic system, leading to a more local formulation. In other 
words, taking a subvolume V delimited by a surface E inside f2, the existence 
of an entropy density s(r; t) is postulated such that 

dSVdt =/v  dr ds(r;dt t) (69) 

with Eqs. (67) and (68) still holding with the subscript V replacing f2. Yet, 
it is clear that deSv/dt, though it describes the exchange of entropy from the 
inside to the outside of Z, cannot generally be written as the surface integral 

- f~  dE . J s  (70) 

where Js would depend on the points on Z only. For example, in our micro- 
scopic MEE model again, we immediately see that [due to collisional transfer 
and whatever the precise definition adopted for s(r; t lf0] (doSv/dt) should 
depend on the one-particle d f f l  over a region of width of order a around Z. 
Only when we further assume that f l  is slowly varying in space should (70) 
become a legitimate expression for the entropy exchange, leading then to the 
familiar local formula ~2~ 

ds(r; o/at + v .Js ( r ;  t) = cr(r; t) (71) 

~(r; t) >/0 (72) 

(~ is the local entropy production). If  we go one step further, and assume that 
our system is close to local equilibrium, then we should recover the Gibbs 
relation.~ ~v~ 

Preliminary investigations show that such a local approach can indeed 
be justified microscopically for the MEE, by combining the present formalism 
with a definition for local entropy along classical lines (see, for example, 
Ref. 20). The technical aspects of the problem are, however, rather involved 
and will be discussed in a separate publication. 

Finally, in an analysis previous to the present work, we studied the 
approach to equilibrium as described by the linearized MEE. Of course, 
from the more general point of view described here, this much simpler 
problem finds an automatic solution. It suffices to write 

f~(r, v; t) = n~eq(v) + 3fl(r, v; t) (73) 

and to expand all our formulas to leading nontrivial order in 3f~ in order to 
show that this linearized MEE also satifies an H-theorem. Yet, an independent 
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p r o o f  o f  this theorem reveals a series o f  interest ing proper t ies ,  which can be 
useful in o ther  contexts ;  for  this reason,  the l inearized M E E  is discussed 
independent ly  in a separa te  publ icat ion.  (19~ 
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